
Published in Proceedings of EDMEDIA 2004 – World Conference on Education Multimedia, Hypermedia and 
Telecommunications, pp. 1590-1595. June 23-26, 2004, Lugano, Switzerland. 

 

On the Learning in E-Learning 
 
 

Raimond Reichert 
Swiss Centre for Innovations in Learning 

University of St Gallen 
9000 St Gallen, Switzerland 
raimond.reichert@unisg.ch 

Werner Hartmann 
Technology & Education 

Swiss Federal Institute of Technology 
8092 Zürich, Switzerland 

hartmann@inf.ethz.ch 
 
 

Abstract: In E-Learning, the emphasis is often on technical aspects, and the reason for using 
technology – the desired pedagogical added-value – is in danger of being neglected. The emphasis 
of this paper is on the actual process of learning, the learning in E-Learning, and how this process 
can be assisted by interactive educational software. We briefly present five high-level quality 
criteria which good educational software must satisfy. Two examples of such software show that a 
high degree of interactivity has its unavoidable price. We discuss the tradeoff between interactivity 
and cost of development, making the point that interactive learning environments can not be 
developed with general purpose authoring tools or learning management systems, but instead 
require extensive, domain-specific development effort.  

 
 
E-Learning: From Interpassivity towards Interactivity 
 
Many educators believe that information and communication technologies fundamentally transform and improve the 
process of learning. This assumption is not new: Each major step in the evolution of modern technology gave raise 
to new hopes and promises. However, the new technologies have, in most cases, not had the proclaimed effect. In E-
Learning, the emphasis is often on the technologies used and on learning management systems (LMS). This type of 
software is independent from the content it manages, and can therefore not improve the process of learning by itself. 
Typically, these programs rarely support more than multiple choice questions, mappings, and quizzes. Such 
rudimentary forms of “interaction” are technically trivial to implement, but they are more “interpassive” than 
interactive. To get an added pedagogical value from an LMS, the emphasis must be more on the learning itself rather 
than on content management and distribution. 
 
It must be noted that there are two kinds of interaction in E-Learning environments which are often confused. The 
first kind, based on a social notion of interaction, is human-human interaction through technology, also referred to as 
computer mediated communication. Instances of this type of interaction are text or video chat rooms, discussions 
forums, application sharing etc. This form of interaction can be supplied by general purpose communication tools 
typically found in LMS implementations. The second kind of interaction, based on a technical notion of interaction, 
is human-computer interaction, referred to as interactivity. Examples include educational software, micro-worlds, 
simulations etc. This form of interaction can not be provided by an LMS itself, but rather requires special purpose 
development effort.  
 
In the following, we focus on interactive educational software, also referred to as interactive (virtual) learning 
environments. We believe that its potential is far from exploited. The use of educational software can enrich the 
process of learning, provided that there is a pedagogically sound concept for its use. To achieve this goal, it is 
necessary to focus on the process of learning, on the Learning in E-Learning. The primary question has to be how 
technology can yield an added value from a pedagogical perspective: What can be done with technology that could 
not be done just as well without it? Figure 1 shows different components of a virtual learning environment. The 
focus of this paper is on interactive content. “Interpassive“ elements such as handouts, animations, or lecture videos 
belong to the category „E-Distribution“ of content; they do not add anything to the actual process of learning which 
could not be done without computer technology. 
 



Published in Proceedings of EDMEDIA 2004 – World Conference on Education Multimedia, Hypermedia and 
Telecommunications, pp. 1590-1595. June 23-26, 2004, Lugano, Switzerland. 

 

„interpassive“ interactive

Learning Management System

Administration, communication, content management etc.

Content („learning objects “)

Software

which

activates

learners

Dynamic

documents

(animations,

video, audio)

Static

documents

(texts, tables,

etc..)

 
 

Figure 1: Interactive educational software versus “interpassive” documents 
 
Criteria of “Good” Interactive Educational Software 
 
The quality of educational software is a product of many factors, and there are different quality guidelines. We 
restrict ourselves to a small number of quality criteria on a high level of abstraction, drawn from a broad range of 
disciplines: pedagogy, human-computer interaction research, and multimedia design research. We point to a few 
selected literature references. Our criteria serve as guidelines for the conception and implementation of educational 
software, even though they do not offer a simple checklist to follow. We do not claim that our criteria are complete, 
since completeness might well prove to be an elusive goal. Our criteria provide a goal to strive towards: One will not 
be able to satisfy all criteria equally well with any particular educational software. 
 
Content Based on Fundamental Ideas The production of educational software is expensive. Therefore, long-lived 
content should be at the center of interactive learning environments. Bruner's concept of „fundamental idea“ is a 
suitable guiding principle for the selection of long-lived content (Bruner, 1960). Since Bruner himself gave only an 
intuitive description, but no precise definition of the concept of fundamental idea, we summarize his idea according 
to Schwill (1994) as follows: A fundamental idea with respect to some domain is a schema for thinking, acting, 
describing, or explaining which is applicable in different areas, may be demonstrated and taught on every 
intellectual level, can be clearly observed in the historical development and will be relevant in the longer term, and 
is related to everyday language and thinking. In other words, fundamental ideas guarantee the selection of content 
which is cognitively demanding, relevant, and long-lived. 
 
Incorporating Different Cognitive Levels Ideally, educational software offers a broad range of tasks on different 
cognitive levels. Bloom (1956) developed a taxonomy of six cognitive levels of increasing complexity: knowledge, 
comprehension, application, analysis, synthesis, and evaluation. Good educational software addresses and 
emphasizes, in particular, the higher cognitive levels, that is, the levels of analysis and synthesis. It is interesting to 
note that with popular computer games such as SimCity, this has been the case for a long time. 
 
High Degree of Interactivity A high degree of human-machine interaction characterizes good educational software. 
By interactivity we do not mean reading a web page or watching an animation, but true interaction between the 
learner and the software. Laurel (1993) defines this type of interaction as follows: „You either feel involved in the 
computer representation or you do not. The crucial point is the ability to interact with the representation, and not 
how often the software feigns communication with you.“ 
 
There are different classifications of interactivity levels. We use a model by Schulmeister (2003) which defines six 
levels of increasing human-computer interaction. Level one means no interaction at all, but only a display of 
information. Level two lets users navigate through the representation of information. Level three offers multiple 
representations of the content. On level four, the user can modify parameters of the representation. Additionally, on 
level five, the user can manipulate the content itself. Level six means the user can create and manipulate objects and 
watch the system react. 
 



Published in Proceedings of EDMEDIA 2004 – World Conference on Education Multimedia, Hypermedia and 
Telecommunications, pp. 1590-1595. June 23-26, 2004, Lugano, Switzerland. 

 

Only few computer based learning environments satisfy the demand for a high degree of interactivity. One reason is 
the high cost of development. As Berg (2002) notes in The Big Questions, „Highly interactive software using 
simulation strategies is almost non-existent in higher education. Clearly the cost of developing such software is a 
barrier.“ Educational software which focuses on fundamental ideas of a domain and consequently addresses 
different cognitive levels has the potential to amortize the high cost of development, because the pedagogical 
concept underlying the software will be of long-lived value. 
 
Feedback The software’s feedback with respect to the actions of the users can assist their learning process. We 
roughly define two levels of feedback, „implicit“ and “explicit“. With implicit feedback, the learners must interpret 
the output that the software produced while they interacted with it. Explicit feedback denotes an automated tutor 
which takes on the role of the teacher. The tutor points learners to mistakes they make, provides support when the 
learners stumble or shows them different possible solutions. However, the term „intelligent tutorial system“ is often 
used when the only feedback is a simple yes-or-no feedback as is the case in multiple choice questions. Explicit 
feedback implies a feedback which specifically takes into account the user's interactions with the software. This type 
of differentiated feedback is usually only possible when the domain at hand is either highly structured and can be 
captured formally, or when the feedback can be generated from a huge database of expert knowledge. 
 
Visualization and Usability It takes time to familiarize oneself with the user interface of any software. Since the 
user interface is not the subject itself, it should be as self-explanatory as possible. However, as of yet, there is little if 
any discussion on usability in the E-Learning context, on what could be called the “learnability” aspects of 
electronic media. However, it should also be noted that there are scientific guidelines to the design of multimedia 
objects, for example Multimedia Learning by Mayer (2001). It is unfortunate that in practice, such guidelines are 
often overridden by rules of thumb like “animations increase learning”.  
 
Moreover, one should also take into account the so-called „Nintendo generation effect“. Guzdial and Soloway 
(2002) argue in Teaching the Nintendo Generation to Program that the high dropout rates in computer science 
courses are caused by the educators' outdated view of information and communication technology. Whereas “Hello 
World“ programs got students excited when computers were still text based, today's „Nintendo generation“ grows 
up in multimedia environments. Educational software needs to correspond to these multimedia environments and to 
the students' every day use of computers. Doing so, it extrinsically motivates learners, boosting students' exploration 
of the content underlying the software. 
 
 
Two Examples of Interactive Educational Software 
 
To what degree the criteria given above can be taken into account when designing educational software depends on 
the subject domain. In the following, we present two examples of educational software which satisfy our demanding 
criteria in different ways and to varying degrees. The examples show that in order to put the emphasis on the 
Learning in E-Learning, highly content-dependent pedagogical design and software development is indispensable. 
The first learning environment has been developed in the Technology & Education research group at the Swiss 
Federal Institute, Zurich. The second example presents a well known application from medical education.  
 
 
Kara: Introduction to Programming  
 
In today's Information Society, knowledge of the fundamentals of information and communication technology is a 
key qualification and must become part of general education. The concepts of formalization and programming are at 
the heart of computer science: Descriptions of processes which are easily understandable by humans must be 
translated to formally precise descriptions digestible by computers. Teaching these concepts as part of general 
education is a difficult challenge. In the last thirty years, many educational programming environments were 
developed with the goal of making the introduction to programming easier. The most prominent example is probably 
Seymour Papert’s Logo based approach where users program a “turtle”.  
 
Here we briefly present the Kara environment for introductory programming (Reichert et al, 2001). The 
environment’s programming mechanism is based on the model of finite state machines. The concept of this type of 
machine is easily understood, and there are many everyday devices whose logic illustrates finite state machines, 
such as watches, vending machines, or VCRs. Moreover, state machines can be visualized in a straight-forward 



Published in Proceedings of EDMEDIA 2004 – World Conference on Education Multimedia, Hypermedia and 
Telecommunications, pp. 1590-1595. June 23-26, 2004, Lugano, Switzerland. 

 

manner. The environment lets users program the ladybug Kara to solve problems in his world. Even though the 
world is simple, there are tough problems to be solved, such as the drawing of a Pascal triangle modulo 2 (figure 2).  
 

    
 

Figure 2: Introduction to programming with Kara 
 
We briefly consider which of our criteria of good educational software the Kara environment satisfies: 
 
Fundamental Ideas The formalization of algorithms, and the translation of algorithms into programs, is a core topic 
of computer science.  
 
Cognitive Levels The tasks to solve range from easy getting-started tasks to demanding tasks from the theory of 
computation. When programming, users must evaluate different possible algorithms for their problems, that is, the 
tasks address the highest level of Bloom’s taxonomy.  
 
Degree of Interactivity The environment is highly interactive: Users create their own worlds and write programs 
which they test against their worlds.  
 
Feedback Bugs in the users’ programs become visually obvious during program execution. Users see when the 
ladybug does not do what they intended it to do. However, there is no explicit feedback which specifically takes into 
account the users’ programs and tells them what causes the bug.  
 
Visualization and Usability Kara is easy to use, and its game-like nature makes it attractive to students. They like the 
environment’s graphical “wrapping”, yet are quick to realize that programming is demanding.  
 
It took five man-years to develop the Kara software, most of which was spent implementing and evaluating the 
software. Since Kara was developed within the context of a framework, much code can be reused for related 
subjects of computer science.  
 
Interactive Simulated Patient: Active Learning with Virtual Patients  
 
An important part of medical education is the diagnosis of illness. Ideally, the students practice on real patients. 
However, that is very expensive, and often difficult to realize. The cases of interest may not always be available just 
when they would be needed in class. Also, it is often not easy to get the patients to talk about their illness in front of 
students. For these reasons, the project Interactive Simulated Patient was initiated in 1990 (Bergin and Fors, 2003).  
 



Published in Proceedings of EDMEDIA 2004 – World Conference on Education Multimedia, Hypermedia and 
Telecommunications, pp. 1590-1595. June 23-26, 2004, Lugano, Switzerland. 

 

The project developed a virtual learning environment for the diagnosis of patients. The system is designed to foster 
active, problem based learning and to be as realistic as possible. Basically, the system consists of a huge multimedia 
database of patient data (example in figure 3). The main task for the students is to come to a efficient, cost-effective, 
and of course correct diagnosis.  
 

 
 

Figure 3: Diagnosis of a virtual patient 
 
Again, we briefly consider which of our criteria of good educational software the Interactive Patient satisfies: 
 
Fundamental Ideas Diagnosis is one of the core tasks of every medical practitioner. The students must do a heuristic 
search in a loosely structured search space – the patient’s data – while trying to minimize the cost of the search and 
the diagnostic tools used for it.  
 
Cognitive Levels The problems the students must solve require comprehensive medical knowledge. They must 
analyze the patient’s situation, draw their own conclusions from this analysis, and act on it.  
 
Degree of Interactivity Since the search space of patient data encompasses a huge amount of data for each patient, a 
high degree of interactivity results.  
 
Feedback The system gives an implicit feedback by showing students the correct diagnosis and how to arrive at it 
with minimal cost.  
 
Visualization and Usability The multimedia data which the students use yield a quite realistic impression of the 
patients. In evaluations, students graded the ease-of-use of the environment a 7.5 average on a scale from 1 to 10.  
 
The quality of this learning environment is ensured by the effort of an interdisciplinary team of over 20 specialists 
which collected the necessary high-quality patient data over 13 years. The high degree of interactivity is not due to 
programming – an authoring tool was used to develop the environment – but rather to the encompassing collection 
of patient data and the experience of the specialists involved in putting it together. This type of work can not be 
automated, and its results can not be reused for other domains.  
 
 
Conclusion: The Tradeoff between Interactivity and Cost of Development 
 
General purpose authoring tools and learning management systems are not enough to satisfy the high requirements 
set forth in the criteria given in this paper – neither LMS nor authoring tools can improve the process of learning per 
se. The desire to achieve a high degree of interactivity and the desire to develop a learning environment with general 
purpose tools and with relatively little effort, exclude each other. Figure 4 shows the tradeoff between interactivity 



Published in Proceedings of EDMEDIA 2004 – World Conference on Education Multimedia, Hypermedia and 
Telecommunications, pp. 1590-1595. June 23-26, 2004, Lugano, Switzerland. 

 

and cost of development. The lower levels of interactivity can be reached with domain-independent general purpose 
tools, but the higher levels can generally only be reached with a development effort tailored to a specific domain.  
 

Tra
deo

ff

Degree of interactivity

Cost of

development

low high 

Multiple Choice, 

quizzes etc.

RoboArm, Kara, 

Interactive Patient etc.

Impossible:

highly interactive content

with Authoring Tools

Navigation
through information

Multiple
representations

Manipulation
of representation

Construction
of objects

Manipulation
of content

Feedback

Display
of information

A
u

th
o

ri
n

g
 T

o
o

ls
S

o
ft

w
a

re

d
e
v
e

lo
p

m
e
n

t

 
 

Figure 4: Tradeoff interactivity – cost of development 
 
If we are to move from the “interpassivity” typical of today’s E-Learning environments to real interactivity, we 
should emphasize the development of interactive, pedagogically well-designed, and domain-specific educational 
software. More interaction implies domain-dependent development which means it is expensive, both in terms of 
effort and cost. Learning is never for free, not even in E-Learning! 
 
 
References 
 
Berg, G. A. (2002). The Big Questions. International Journal on E-Learning 1(2), 5–6. 
 
Bergin, R. A. and Fors, U. G. H. (2003, May). Interactive Simulated Patient – an advanced tool for student-activated 
learning in medicine and healthcare. Computers & Education 40(4), 361 – 376. 
 
Bloom, B. (1956). Taxonomy of Educational Objectives. Longmans, London. 
 
Bruner, J. S. (1960). The Process of Education. Harvard University Press. 
 
Guzdial, M. and Soloway, E. (2002). Teaching the Nintendo Generation to Program.  
Communications of the ACM 45(4), 17–21. 
 
Hartmann, W., Nievergelt, J., and Reichert, R. (2001, September). Kara, finite state machines, and the case for 
programming as part of general education. Symposia on Human-Centric Computing Languages and Environments, 
pp. 135–141. IEEE. http://www.educeth.ch/karatojava/. 
 
Laurel, B. (1993). Computers as Theatre (second ed.). Addison-Wesley Publishing. 
 
Mayer, R. (2001). Multimedia Learning. Cambridge University Press.  
 
Schulmeister, R. (2003). Taxonomy of Multimedia Component Interactivity. A Contribution to the Current Metadata 
Debate. Studies in Communication Sciences. Studi di scienze della communicazione. 3(1), 61–80.  
See also http://www.izhd.uni-hamburg.de/pdfs/Interactivity.pdf  
 
Schwill, A. (1994). Fundamental Ideas of Computer Science. EATCS-Bulletin 53, 274–295.  
See also http://ddi.cs.uni-potsdam.de/Forschung/Schriften/EATCS.pdf 


